Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cellulose Synthase Stoichiometry in Aspen Differs from Arabidopsis and Norway Spruce.

Identifieur interne : 001014 ( Main/Exploration ); précédent : 001013; suivant : 001015

Cellulose Synthase Stoichiometry in Aspen Differs from Arabidopsis and Norway Spruce.

Auteurs : Xueyang Zhang [Suède] ; Pia Guadalupe Dominguez [Suède] ; Manoj Kumar [Suède, Royaume-Uni] ; Joakim Bygdell [Suède] ; Sergey Miroshnichenko [Suède] ; Björn Sundberg [Suède] ; Gunnar Wingsle [Suède] ; Totte Niittyl [Suède]

Source :

RBID : pubmed:29760198

Descripteurs français

English descriptors

Abstract

Cellulose is synthesized at the plasma membrane by cellulose synthase complexes (CSCs) containing cellulose synthases (CESAs). Genetic analysis and CESA isoform quantification indicate that cellulose in the secondary cell walls of Arabidopsis (Arabidopsis thaliana) is synthesized by isoforms CESA4, CESA7, and CESA8 in equimolar amounts. Here, we used quantitative proteomics to investigate whether the CSC model based on Arabidopsis secondary cell wall CESA stoichiometry can be applied to the angiosperm tree aspen (Populus tremula) and the gymnosperm tree Norway spruce (Picea abies). In the developing xylem of aspen, the secondary cell wall CESA stoichiometry was 3:2:1 for PtCESA8a/b:PtCESA4:PtCESA7a/b, while in Norway spruce, the stoichiometry was 1:1:1, as observed previously in Arabidopsis. Furthermore, in aspen tension wood, the secondary cell wall CESA stoichiometry changed to 8:3:1 for PtCESA8a/b:PtCESA4:PtCESA7a/b. PtCESA8b represented 73% of the total secondary cell wall CESA pool, and quantitative polymerase chain reaction analysis of CESA transcripts in cryosectioned tension wood revealed increased PtCESA8b expression during the formation of the cellulose-enriched gelatinous layer, while the transcripts of PtCESA4, PtCESA7a/b, and PtCESA8a decreased. A wide-angle x-ray scattering analysis showed that the shift in CESA stoichiometry in tension wood coincided with an increase in crystalline cellulose microfibril diameter, suggesting that the CSC CESA composition influences microfibril properties. The aspen CESA stoichiometry results raise the possibility of alternative CSC models and suggest that homomeric PtCESA8b complexes are responsible for cellulose biosynthesis in the gelatinous layer in tension wood.

DOI: 10.1104/pp.18.00394
PubMed: 29760198
PubMed Central: PMC6053019


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cellulose Synthase Stoichiometry in Aspen Differs from Arabidopsis and Norway Spruce.</title>
<author>
<name sortKey="Zhang, Xueyang" sort="Zhang, Xueyang" uniqKey="Zhang X" first="Xueyang" last="Zhang">Xueyang Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dominguez, Pia Guadalupe" sort="Dominguez, Pia Guadalupe" uniqKey="Dominguez P" first="Pia Guadalupe" last="Dominguez">Pia Guadalupe Dominguez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Manoj" sort="Kumar, Manoj" uniqKey="Kumar M" first="Manoj" last="Kumar">Manoj Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, Manchester M13 9PT</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bygdell, Joakim" sort="Bygdell, Joakim" uniqKey="Bygdell J" first="Joakim" last="Bygdell">Joakim Bygdell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miroshnichenko, Sergey" sort="Miroshnichenko, Sergey" uniqKey="Miroshnichenko S" first="Sergey" last="Miroshnichenko">Sergey Miroshnichenko</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sundberg, Bjorn" sort="Sundberg, Bjorn" uniqKey="Sundberg B" first="Björn" last="Sundberg">Björn Sundberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden totte.niittyla@slu.se.</nlm:affiliation>
<country wicri:rule="url">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29760198</idno>
<idno type="pmid">29760198</idno>
<idno type="doi">10.1104/pp.18.00394</idno>
<idno type="pmc">PMC6053019</idno>
<idno type="wicri:Area/Main/Corpus">000E33</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E33</idno>
<idno type="wicri:Area/Main/Curation">000E33</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E33</idno>
<idno type="wicri:Area/Main/Exploration">000E33</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cellulose Synthase Stoichiometry in Aspen Differs from Arabidopsis and Norway Spruce.</title>
<author>
<name sortKey="Zhang, Xueyang" sort="Zhang, Xueyang" uniqKey="Zhang X" first="Xueyang" last="Zhang">Xueyang Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Dominguez, Pia Guadalupe" sort="Dominguez, Pia Guadalupe" uniqKey="Dominguez P" first="Pia Guadalupe" last="Dominguez">Pia Guadalupe Dominguez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kumar, Manoj" sort="Kumar, Manoj" uniqKey="Kumar M" first="Manoj" last="Kumar">Manoj Kumar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>Faculty of Life Sciences, University of Manchester, Manchester M13 9PT</wicri:regionArea>
<orgName type="university">Université de Manchester</orgName>
<placeName>
<settlement type="city">Manchester</settlement>
<region type="nation">Angleterre</region>
<region nuts="2" type="region">Grand Manchester</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bygdell, Joakim" sort="Bygdell, Joakim" uniqKey="Bygdell J" first="Joakim" last="Bygdell">Joakim Bygdell</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Miroshnichenko, Sergey" sort="Miroshnichenko, Sergey" uniqKey="Miroshnichenko S" first="Sergey" last="Miroshnichenko">Sergey Miroshnichenko</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sundberg, Bjorn" sort="Sundberg, Bjorn" uniqKey="Sundberg B" first="Björn" last="Sundberg">Björn Sundberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden totte.niittyla@slu.se.</nlm:affiliation>
<country wicri:rule="url">Suède</country>
<wicri:regionArea>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea</wicri:regionArea>
<wicri:noRegion>SE 901 83 Umea</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (cytology)</term>
<term>Arabidopsis (enzymology)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Cell Wall (enzymology)</term>
<term>Glucosyltransferases (isolation & purification)</term>
<term>Glucosyltransferases (metabolism)</term>
<term>Peptides (analysis)</term>
<term>Peptides (metabolism)</term>
<term>Picea (cytology)</term>
<term>Picea (enzymology)</term>
<term>Plant Proteins (isolation & purification)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (cytology)</term>
<term>Populus (enzymology)</term>
<term>Proteomics (methods)</term>
<term>Scattering, Radiation (MeSH)</term>
<term>Species Specificity (MeSH)</term>
<term>Xylem (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (cytologie)</term>
<term>Arabidopsis (enzymologie)</term>
<term>Diffusion de rayonnements (MeSH)</term>
<term>Glucosyltransferases (isolement et purification)</term>
<term>Glucosyltransferases (métabolisme)</term>
<term>Paroi cellulaire (enzymologie)</term>
<term>Peptides (analyse)</term>
<term>Peptides (métabolisme)</term>
<term>Picea (cytologie)</term>
<term>Picea (enzymologie)</term>
<term>Populus (cytologie)</term>
<term>Populus (enzymologie)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines végétales (isolement et purification)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéomique (méthodes)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Xylème (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Glucosyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Glucosyltransferases</term>
<term>Peptides</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Picea</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Arabidopsis</term>
<term>Picea</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Arabidopsis</term>
<term>Paroi cellulaire</term>
<term>Picea</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Arabidopsis</term>
<term>Cell Wall</term>
<term>Picea</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Glucosyltransferases</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glucosyltransferases</term>
<term>Peptides</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Protéomique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Scattering, Radiation</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Diffusion de rayonnements</term>
<term>Spécificité d'espèce</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellulose is synthesized at the plasma membrane by cellulose synthase complexes (CSCs) containing cellulose synthases (CESAs). Genetic analysis and CESA isoform quantification indicate that cellulose in the secondary cell walls of Arabidopsis (
<i>Arabidopsis thaliana</i>
) is synthesized by isoforms CESA4, CESA7, and CESA8 in equimolar amounts. Here, we used quantitative proteomics to investigate whether the CSC model based on Arabidopsis secondary cell wall CESA stoichiometry can be applied to the angiosperm tree aspen (
<i>Populus tremula</i>
) and the gymnosperm tree Norway spruce (
<i>Picea abies</i>
). In the developing xylem of aspen, the secondary cell wall CESA stoichiometry was 3:2:1 for PtCESA8a/b:PtCESA4:PtCESA7a/b, while in Norway spruce, the stoichiometry was 1:1:1, as observed previously in Arabidopsis. Furthermore, in aspen tension wood, the secondary cell wall CESA stoichiometry changed to 8:3:1 for PtCESA8a/b:PtCESA4:PtCESA7a/b. PtCESA8b represented 73% of the total secondary cell wall CESA pool, and quantitative polymerase chain reaction analysis of CESA transcripts in cryosectioned tension wood revealed increased
<i>PtCESA8b</i>
expression during the formation of the cellulose-enriched gelatinous layer, while the transcripts of
<i>PtCESA4</i>
,
<i>PtCESA7a/b</i>
, and
<i>PtCESA8a</i>
decreased. A wide-angle x-ray scattering analysis showed that the shift in CESA stoichiometry in tension wood coincided with an increase in crystalline cellulose microfibril diameter, suggesting that the CSC CESA composition influences microfibril properties. The aspen CESA stoichiometry results raise the possibility of alternative CSC models and suggest that homomeric PtCESA8b complexes are responsible for cellulose biosynthesis in the gelatinous layer in tension wood.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29760198</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>07</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>177</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2018</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Cellulose Synthase Stoichiometry in Aspen Differs from Arabidopsis and Norway Spruce.</ArticleTitle>
<Pagination>
<MedlinePgn>1096-1107</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.18.00394</ELocationID>
<Abstract>
<AbstractText>Cellulose is synthesized at the plasma membrane by cellulose synthase complexes (CSCs) containing cellulose synthases (CESAs). Genetic analysis and CESA isoform quantification indicate that cellulose in the secondary cell walls of Arabidopsis (
<i>Arabidopsis thaliana</i>
) is synthesized by isoforms CESA4, CESA7, and CESA8 in equimolar amounts. Here, we used quantitative proteomics to investigate whether the CSC model based on Arabidopsis secondary cell wall CESA stoichiometry can be applied to the angiosperm tree aspen (
<i>Populus tremula</i>
) and the gymnosperm tree Norway spruce (
<i>Picea abies</i>
). In the developing xylem of aspen, the secondary cell wall CESA stoichiometry was 3:2:1 for PtCESA8a/b:PtCESA4:PtCESA7a/b, while in Norway spruce, the stoichiometry was 1:1:1, as observed previously in Arabidopsis. Furthermore, in aspen tension wood, the secondary cell wall CESA stoichiometry changed to 8:3:1 for PtCESA8a/b:PtCESA4:PtCESA7a/b. PtCESA8b represented 73% of the total secondary cell wall CESA pool, and quantitative polymerase chain reaction analysis of CESA transcripts in cryosectioned tension wood revealed increased
<i>PtCESA8b</i>
expression during the formation of the cellulose-enriched gelatinous layer, while the transcripts of
<i>PtCESA4</i>
,
<i>PtCESA7a/b</i>
, and
<i>PtCESA8a</i>
decreased. A wide-angle x-ray scattering analysis showed that the shift in CESA stoichiometry in tension wood coincided with an increase in crystalline cellulose microfibril diameter, suggesting that the CSC CESA composition influences microfibril properties. The aspen CESA stoichiometry results raise the possibility of alternative CSC models and suggest that homomeric PtCESA8b complexes are responsible for cellulose biosynthesis in the gelatinous layer in tension wood.</AbstractText>
<CopyrightInformation>© 2018 American Society of Plant Biologists. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xueyang</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dominguez</LastName>
<ForeName>Pia Guadalupe</ForeName>
<Initials>PG</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kumar</LastName>
<ForeName>Manoj</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bygdell</LastName>
<ForeName>Joakim</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-9833-4628</Identifier>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Miroshnichenko</LastName>
<ForeName>Sergey</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sundberg</LastName>
<ForeName>Björn</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0003-1801-3873</Identifier>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wingsle</LastName>
<ForeName>Gunnar</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niittylä</LastName>
<ForeName>Totte</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">0000-0001-8029-1503</Identifier>
<AffiliationInfo>
<Affiliation>Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE 901 83 Umea, Sweden totte.niittyla@slu.se.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>05</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C120025">IRX3 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="C420969">CESA8 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="D005964">Glucosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="C478648">cellulose synthase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Plant Physiol. 2018 Jul;177(3):873-874</RefSource>
<PMID Version="1">30006457</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005964" MajorTopicYN="N">Glucosyltransferases</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="N">Peptides</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028222" MajorTopicYN="N">Picea</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012542" MajorTopicYN="N">Scattering, Radiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>04</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>05</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29760198</ArticleId>
<ArticleId IdType="pii">pp.18.00394</ArticleId>
<ArticleId IdType="doi">10.1104/pp.18.00394</ArticleId>
<ArticleId IdType="pmc">PMC6053019</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1450-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Dec;26(12):4834-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25490917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2012 Nov 2;11(11):5145-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23017020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15566-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17878302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W408-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25943549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Sep;7(9):1634-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22899332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Sep 25;104(39):15572-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17878303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2015 Oct 1;1002:144-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26319803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 May;14(5):248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19375973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2015 Feb 6;14(2):1137-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25546269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Sep;11(9):814-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22595788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2014 Feb;11(2):167-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24336358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2012 Nov 7;9(76):2749-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22874093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Jan 30;279(5351):717-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9445479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Jul;29(7):1585-1604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28655750</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Dec;163(4):1558-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24154621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2018 May;177(1):151-167</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29523715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2006;22:53-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16824006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jan;161(1):465-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23175754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Nov;148(3):1283-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18805954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 May;9(5):689-701</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9165747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:69-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24579997</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2014 Apr 4;13(4):1885-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24552128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 May 30;497(7451):579-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23698360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):E1195-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22065760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1983 Nov;159(4):347-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24258233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10079-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11517344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Dec;166(4):1709-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25352273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2014 Sep 5;13(9):3979-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24986539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Dec;43(12):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Aug;187(3):777-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20546138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Expert Rev Proteomics. 2004 Dec;1(4):503-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15966845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2015 Jan;241(1):29-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25486888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2006 Feb 8;54(3):597-606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Nov;11(11):2075-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10559435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Oct;216(2):482-494</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28186632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 Mar;4(2):331-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21300756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2008;4:222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18854821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):11360-11365</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27647898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2015 Oct 12;11:46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26464578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans A Math Phys Eng Sci. 2018 Feb 13;376(2112):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29277742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2010 Feb;9(2):368-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19955078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2015 Aug 4;87(15):7636-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26158323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1980 Feb;84(2):315-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7189755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Sep;175(1):146-156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28768815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):1013-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383103</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
<li>Suède</li>
</country>
<region>
<li>Angleterre</li>
<li>Grand Manchester</li>
</region>
<settlement>
<li>Manchester</li>
</settlement>
<orgName>
<li>Université de Manchester</li>
</orgName>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Zhang, Xueyang" sort="Zhang, Xueyang" uniqKey="Zhang X" first="Xueyang" last="Zhang">Xueyang Zhang</name>
</noRegion>
<name sortKey="Bygdell, Joakim" sort="Bygdell, Joakim" uniqKey="Bygdell J" first="Joakim" last="Bygdell">Joakim Bygdell</name>
<name sortKey="Dominguez, Pia Guadalupe" sort="Dominguez, Pia Guadalupe" uniqKey="Dominguez P" first="Pia Guadalupe" last="Dominguez">Pia Guadalupe Dominguez</name>
<name sortKey="Kumar, Manoj" sort="Kumar, Manoj" uniqKey="Kumar M" first="Manoj" last="Kumar">Manoj Kumar</name>
<name sortKey="Miroshnichenko, Sergey" sort="Miroshnichenko, Sergey" uniqKey="Miroshnichenko S" first="Sergey" last="Miroshnichenko">Sergey Miroshnichenko</name>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
<name sortKey="Sundberg, Bjorn" sort="Sundberg, Bjorn" uniqKey="Sundberg B" first="Björn" last="Sundberg">Björn Sundberg</name>
<name sortKey="Wingsle, Gunnar" sort="Wingsle, Gunnar" uniqKey="Wingsle G" first="Gunnar" last="Wingsle">Gunnar Wingsle</name>
</country>
<country name="Royaume-Uni">
<region name="Angleterre">
<name sortKey="Kumar, Manoj" sort="Kumar, Manoj" uniqKey="Kumar M" first="Manoj" last="Kumar">Manoj Kumar</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001014 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001014 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29760198
   |texte=   Cellulose Synthase Stoichiometry in Aspen Differs from Arabidopsis and Norway Spruce.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29760198" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020